How ROM Works

ROM at Work

Figure 1. BIOS uses Flash memory, a type of ROM.
Figure 1. BIOS uses Flash memory, a type of ROM.

Similar to RAM, ROM chips (Figure 1) contain a grid of columns and rows. But where the columns and rows intersect, ROM chips are fundamentally different from RAM chips. While RAM uses transistors to turn on or off access to a capacitor at each intersection, ROM uses a diode to connect the lines if the value is 1. If the value is 0, then the lines are not connected at all.

A diode normally allows current to flow in only one direction and has a certain threshold, known as the forward breakover, that determines how much current is required before the diode will pass it on. In silicon-based items such as processors and memory chips, the forward breakover voltage is approximately 0.6 volts. By taking advantage of the unique properties of a diode, a ROM chip can send a charge that is above the forward breakover down the appropriate column with the selected row grounded to connect at a specific cell. If a diode is present at that cell, the charge will be conducted through to the ground, and, under the binary system, the cell will be read as being "on" (a value of 1). The neat part of ROM is that if the cell's value is 0, there is no diode at that intersection to connect the column and row. So the charge on the column does not get transferred to the row.

As you can see, the way a ROM chip works necessitates the programming of perfect and complete data when the chip is created. You cannot reprogram or rewrite a standard ROM chip. If it is incorrect, or the data needs to be updated, you have to throw it away and start over. Creating the original template for a ROM chip is often a laborious process full of trial and error. But the benefits of ROM chips outweigh the drawbacks. Once the template is completed, the actual chips can cost as little as a few cents each. They use very little power, are extremely reliable and, in the case of most small electronic devices, contain all the necessary programming to control the device. A great example is the small chip in the singing fish toy. This chip, about the size of your fingernail, contains the 30-second song clips in ROM and the control codes to synchronize the motors to the music.