Prev NEXT

How EUVL Chipmaking Works

By: Kevin Bonsor

Making Chips

Before you learn about how EUV lithography will revolutionize the manufacturing of microprocessors, you should first understand a thing or two about current manufacturing processes. Microprocessors, also called computer chips, are made using a process called lithography. Specifically, deep-ultraviolet lithography is used to make the current breed of microchips and was most likely used to make the chip that is inside your computer.

Lithography is akin to photography in that it uses light to transfer images onto a substrate. In the case of a camera, the substrate is film. Silicon is the traditional substrate used in chipmaking. To create the integrated circuit design that's on a microprocessor, light is directed onto a mask. A mask is like a stencil of the circuit pattern. The light shines through the mask and then through a series of optical lenses that shrink the image down. This small image is then projected onto a silicon, or semiconductor, wafer.

Advertisement

The wafer is covered with a light-sensitive, liquid plastic called photoresist. The mask is placed over the wafer, and when light shines through the mask and hits the silicon wafer, it hardens the photoresist that isn't covered by the mask. The photoresist that is not exposed to light remains somewhat gooey and is chemically washed away, leaving only the hardened photoresist and exposed silicon wafer.

The key to creating more powerful microprocessors is the size of the light's wavelength. The shorter the wavelength, the more transistors can be etched onto the silicon wafer. More transistors equals a more powerful, faster microprocessor. That's the big reason why an Intel Pentium 4 processor, which has 42 million transistors, is faster than the Pentium 3, which has 28 million transistors.

As of 2001, deep-ultraviolet lithography uses a wavelength of 240 nanometers. A nanometer is one-billionth of a meter. As chipmakers reduce to 100-nanometer wavelengths, they will need a new chipmaking technology. The problem posed by using deep-ultraviolet lithography is that as the light's wavelengths get smaller, the light gets absorbed by the glass lenses that are intended to focus it. The result is that the light doesn't make it to the silicon, so no circuit pattern is created on the wafer.

This is where EUVL will take over. In EUVL, glass lenses will be replaced by mirrors to focus light. In the next section, you will learn just how EUVL will be used to produce chips that are at least five times more powerful than the most powerful chips made in 2001.