For some people, the term "black box" brings to mind the recording devices in airplanes that are valuable for postmortem analyses if the unthinkable happens. For others it evokes small, minimally outfitted theaters. But black box is also an important term in the world of artificial intelligence.
AI black boxes refer to AI systems with internal workings that are invisible to the user. You can feed them input and get output, but you cannot examine the system's code or the logic that produced the output.
Advertisement
Machine learning is the dominant subset of artificial intelligence. It underlies generative AI systems like ChatGPT and DALL-E2.There are three components to machine learning: an algorithm or a set of algorithms, training data and a model. An algorithm is a set of procedures. In machine learning, an algorithm learns to identify patterns after being trained on a large set of examples — the training data. Once a machine-learning algorithm has been trained, the result is a machine-learning model. The model is what people use.
For example, a machine-learning algorithm could be designed to identify patterns in images, and training data could be images of dogs. The resulting machine-learning model would be a dog spotter. You would feed it an image as input and get as output whether and where in the image a set of pixels represents a dog.
Any of the three components of a machine-learning system can be hidden, or in a black box. As is often the case, the algorithm is publicly known, which makes putting it in a black box less effective. So to protect their intellectual property, AI developers often put the model in a black box. Another approach software developers take is to obscure the data used to train the model — in other words, put the training data in a black box.
The opposite of a black box is sometimes referred to as a glass box. An AI glass box is a system whose algorithms, training data and model are all available for anyone to see. But researchers sometimes characterize aspects of even these as black box.
That's because researchers don't fully understand how machine-learning algorithms, particularly deep-learning algorithms, operate. The field of explainable AI is working to develop algorithms that, while not necessarily glass box, can be better understood by humans.
Advertisement